- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Barrows, John K. (1)
-
Goodrich, James A. (1)
-
Kugel, Jennifer F. (1)
-
Ly, Elina (1)
-
Suwita, Johannes P. (1)
-
Van Dyke, Michael W. (1)
-
Voong, Calvin K. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
D’Auria, Sabato (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
D’Auria, Sabato (Ed.)The transcriptional activator p53 is a tumor suppressor protein that controls cellular pathways important for cell fate decisions, including cell cycle arrest, senescence, and apoptosis. It functions as a tetramer by binding to specific DNA sequences known as response elements (REs) to control transcription via interactions with co-regulatory complexes. Despite its biological importance, the mechanism by which p53 binds REs remains unclear. To address this, we have used an in vitro single molecule fluorescence approach to quantify the dynamic binding of full-length human p53 to five native REs in real time under equilibrium conditions. Our approach enabled us to quantify the oligomeric state of DNA-bound p53. We found little evidence that dimer/DNA complexes form as intermediates en route to binding or dissociation of p53 tetramer/DNA complexes. Interestingly, however, at some REs dimers can rapidly exchange from tetramer/DNA complexes. Real time kinetic measurements enabled us to determine rate constants for association and dissociation at all five REs, which revealed two kinetically distinct populations of tetrameric p53/RE complexes. For the less stable population, the rate constants for dissociation were larger at REs closest to consensus, showing that the more favorable binding sequences form the least kinetically stable complexes. Together our single molecule measurements provide new insight into mechanisms by which tetrameric p53 forms complexes on different native REs.more » « less
-
Barrows, John K.; Van Dyke, Michael W. (, PLOS ONE)D’Auria, Sabato (Ed.)Biolayer interferometry (BLI) is a widely utilized technique for determining macromolecular interaction dynamics in real time. Using changes in the interference pattern of white light reflected off a biosensor tip, BLI can determine binding parameters for protein-protein ( e . g ., antibody-substrate kinetics) or protein-small molecule ( e . g ., drug discovery) interactions. However, a less-appreciated application for BLI analysis is DNA-protein interactions. DNA-binding proteins play an immense role in cellular biology, controlling critical processes including transcription, DNA replication, and DNA repair. Understanding how proteins interact with DNA often provides important insight into their biological function, and novel technologies to assay DNA-protein interactions are of broad interest. Currently, a detailed protocol utilizing BLI for DNA-protein interactions is lacking. In the following protocol, we describe the use of BLI and biotinylated-DNA probes to determine the binding kinetics of a transcription factor to a specific DNA sequence. The experimental steps include the generation of biotinylated-DNA probes, the execution of the BLI experiment, and data analysis by scientific graphing and statistical software ( e . g ., GraphPad Prism). Although the example experiment used throughout this protocol involves a prokaryotic transcription factor, this technique can be easily translated to any DNA-binding protein. Pitfalls and potential solutions for investigating DNA-binding proteins by BLI are also presented.more » « less
An official website of the United States government
